VBA Excel 2013/2016

VBA
Visual Basic for Applications

Learner Guide

VBA Excel 2013/2016

Table of Contents

SECTION 1 0 WORKING WITH MACROS ...t 5
WORKING WITH MACROS ...ttt e e e nnaaeeeea e 6
DN 0 To 10 | (o= I g = Lo o SN 6
Opening Excel (using WIndows 7 0r 10)ccoovvviiiiiiiee e 6
Recognizing the macro tools and what they arecc.cooovvviiiiiiiieeeeeeeens 8
Practice MacrosS firST......ooooeiie i 8
Create YOUI IMACKO ..uuiieieieii e et ettt e e e e e e e e e e e e et e e e et e e ean e e et e e eaneeesnnaees 9
[q=TeTo] o [T o = U 1 4 F= T {0 S 10
Recording Your SECONA MACTOcooeeeieeeeeeeeeee e 12
Testing your recorded macro ShOrtcut KEYSccevveeeviveeeeiiiiiiiiee e 13
Testing your recorded macro from the Menuccceeveeiiiiiiiiiiiiiiiiiiiiiens 14
View my macro code in the VBEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieniaees 15
SECTION 2 O ASSIGNING MACROSoouiiiiiiiiiiiiiiiiiiiieaeennannnnnnnnnnannaes 21
LOCATION OF RECORDED MACRO..... oot 22
Absolute or Relative macro reCordingeeeeeeeeuemmemmmiiiiiiiiiee. 22
USING ADSOIULE ... 22
Viewing ADSOIULE COOE.........uuuiiiiiiiiiiiiiiii e 24
RUNNING ADSOIULE ... 24
USING REIALIVE ... 25
Testing Absolute and Relative MacrosS..............uvieiiiieeieieeecie e, 26
Viewing code of both Absolute and Relative macroscccceeeeeeeeeeiiiiinnnnnn. 27
Code fOr ADSOIULE ..o 27
Code fOr REIALIVEcooiieieiiee e e 28
Assigning your macros to menus, buttons and toolbarscciiiiiiin 28
Adding a button to Your tOOIDAruiiiiiiii e, 28
=153 (] 0o I/ 10 1 o1 1t (o] o I 29
Adding a new button to the Quick Access Toolbar.............ccviiiiiiiiiiiieeeennnn. 29
Add an Icon to the QAT fOr YOUIr MACKO..........uieeieiiiiie e 30
SECTION 3 O MAKE DECISIONSouiiiiiiiiiiiiiiiiiiiiiiiiniiieieiesnnninennnennneennnees 33

VBA Excel 2013/2016

Making DecCiSIONS WIth COUEiiiiiiiieiiiiiee e 34
Multiple-ling EISe ... 35
Testing your If StatemMEeNtcoooiieieeee 37
Turn on the Relative ReferenCe........coooviiiiiiiiiiii e 38
(070]0) 1[0 T O o [PP PP PP PPPPPPPPPP 38
Adding Do... Loop statement..............ooooiiiii 38
TeStNG the DO LOOP «.uuiieeeieeeeee e e e e e e 39
(@] 07/ o X @ T [40
Testing your New If StatemMeNnt............cooiviiiiiiiiii e 41
Adding Do... Loop statement.............ccooooiiiiiii 41
TeStiNG the DO LOOP ..uuiieeeiieeeee e 42
[(0111 (o I o701 U | o | PR 46
For... Nextstatementcooooiiiiiii e 46
Variable Naming CONVENLIONScccccoiiiiiiiiiiiie e 48
(70 4 151 =1 | £ RPN 48
BUIIt-IN CONSTANTScooiiiiiiiieiiieeeeee e 49
ODJECt VAriaDIESueiiiiiiiiiii 50
Working with objects using a For ... Next statementccccoiiein 51
How to select a range based on starting point.........cccccvvvveiiiiiiiiiiiiiiiiiiieeeeee. 52
How to add one macro in another's routingccccccvvvvveieeiiiiiiiiiiieiieeeeeeeee 54

SECTION 4 O PERSONAL.XLSB ..., 56
Personal WorkbOOK MACIOS...........uiiiieeiieeieie et e e e e e e e e eeeeees 57
How do | create a Personal.xISh file? ... 57
AULO RUN MACIO(S) e eeeeieeeeee e 58
AULO_OPBIN L.ttt 59
U (o T 4 0 60
FINAI EXEICISE ...iiiieeeiiiiie ettt et s e e e e e e e ettt s e e e e e e e e eeeaann e eeeeeeeennnes 60

VBA Excel 2013/2016

VBA Excel 2013/2016

SECTION 1 0 WORKING WITH MACROS

What will | learn in this section?

Create a macro
Run a macro
View a macro

VBA Excel 2013/2016

WORKING WITH MACROS
About Excel macros

This will be an introduction to Visual Basic for Applications (VBA) in Excel
2013/2016. For Excel power user who is not yet a programmer or anyone who just
wants to know more. VBA is easy to learn, by creating a macro and then viewing
the code anyone can quickly learn how to read the language.

The more you learn the more you can modify VBA to have the macro do the extra
task that a user needs.

The Visual Basic Editor (VBE) is the user-friendly program that you will use to talk
with Excel. In it you can create your VBA procedures (macros). You will then be
able to modify and test these components easily with short cut keys that will help
you step through your code.

The first macro you will create is a macro you record using Excel’s macro
recorder. You will record yourself doing a few steps with the AutoFilter feature.

Opening Excel (using Windows 7 or 10)

1. Click the Start button in Windows 7 on the taskbar.

£ [iype here to search

Windows 10 click Search:

2. In Windows 7 point to All Programs.

All Programs

In Windows 10 type: EXcelin the Search box.

£ [iype here to search

VBA Excel 2013/2016

3. Click Microsoft Excel (on the menu in Windows 7)

(on the menu in Windows 10), click Excel P Best match
2016 xg Excel 2016
. .] Desktop app
Your screen should look like this.

Book2 - Encel
Page Layout Formulas Data Review View Power Pivot Q Tell me what tto
n . .| = iti - - -
D 3‘} Calibn M -A A T == '5’/' E-f General - Cnndltlnnal [- Z %Y p
P B - Gmeata;Tab\e' i Delete ~ m' o Fd
aste - R . - === A= - - o e ort n
- ¥ B Iu = S A S==EE[H $-% > o =0 ECeHStyles' [Format = T Filter~ Select -
Clipboard & Font [F] Alignment [F] Mumber [F] Styles Cells Editing ~
H ©-
AL - Je v
A B C D E F G H J K L M M 2] -
1 |
"
2
3
4

1. Click the File tab and Open menu or press Ctrl + F12.

Home Insert Page Layout Formulas NOtice' |f yOU dO
e save B mmditon not see the file
Bl save as extension .xIsm
=1 Save as Adobe PDF %ﬂ your compu[er is
IEEEEN] fine. Normally this
[Close iy feature is turned off.

It is shown here to
identify this file as
Mame Date maodified dlﬁ:erent ThIS flle

- ~'5Sor‘t&FiIter.J-d?m 1172472007 7:271 AR was Saved as a
A5 Absolute2iRelative. dsm 7 gt X
ﬂfj Exercise far VBA Class.dsm MaCI"O-enabled flle
B IfCasexdsm format
5 Sort&Filter.sm ’

(7| StateAbbreviation5 0000.dsx
B StateAbbreviation | 00000.:sx

2. Open the Sort&Filter.xIsm file.

Your screen should look like this.

A B C D E F]
1 Employee's Pay Roll List
2
3
4 EmplD R4 FirstName Rd | astName R DateHired R Dept Code g
5 EMP123 Hazel Abdul 22-Jul-02 TR
6 EMP124 Liza Able 4-Jul-02 BF
7 EMP125 Robert Albert 20-Oct-02 NB
8 EMP126 Howard Alexi 23-Apr-02 PP
9 EMP127 Maxine Al-Sabah 19-Mar-02 DR

VBA Excel 2013/2016

Recognizing the macro tools and what they are

Under the View tab in Excel you will find the Macro group. In the Group there are

three submenu items.

Name

Description

View Macros...

List the Macros available in Excel

Record Macro...

Start recording a macro by typing a name for your
macro and a location to store the macro

Use Relative References

Tool used to view, edit and create macros

On the View tab in the Macro group the Macro menu when clicked should look like

this.
Power Pivot 2 Tell me what you want to do
DQ F= New Window [Isplit [EEJ = Macros
- E Arrange All '— Hide) B view Macros
Zoom to Switch Macros -
S lechion El Freeze Panes = D Unhide Windows ~ - 'lj Recard Macra
0m Window IMacros Use Relative References

Practice macros first

Before you record a macro, it is a good idea to practice the macro steps and if
there are more than 6-8 steps it is a good idea to write them down to make sure

you do not miss a step when recording.

1. Click in cell F5 and click the Data tab.

2. On the Data ribbon in the Sort & Filter group, click to Filter button.

Y Clear

leappl

Sort Filter
T Advanced
Sort %Iter

Filter is a toggle button for turning the filter on or off.

Your screen should look like this.

EmplD B FirstName B8 L astName B DateHired B8 Dept Code B
EMP123 Hazel Abdul 22-Jul-02|TR ITraining Region
EMP124 Liza Able 4-Jul-02 BF Backup Floor
EMP125 Robert Albert 20-Oct-02 NB North Bank

8

VBA Excel 2013/2016

3. Click the down-arrow for Division and click (Select All) to remove
checkmarks.

Search P

- [v] (Select All)
[+ Anacortes
[Bremerton
--[¥| Hoquiam

i[¥] Sedro Woolley

s T alsas e sas I

4. Check the box for Bremerton and click the OK button.

5. On the Data tab, Sort & Filter group, click Filter to turn off filter.
Filter is a toggle button for turning the filter on or off.

T

Filter

Y
Sort QF%

Notice that your data is now without any filter and the AutoFilter has been
turned off.

Create your macro

The first character of the macro name must be a letter. Other characters can be
letters, numbers, or underscore characters. Spaces are not allowed in a macro
name; an underscore character works well as a word separator.

o Do not use a macro name that is also a cell reference, or you can get an
error message that the macro name is not valid.

o You can use CTRL+ letter (for lowercase letters) or CTRL+SHIFT+ letter
(for uppercase letters), where letter is any letter key on the keyboard. The
shortcut key letter you use cannot be a number or special character such
as @ or #.

o In the Store macro in box, click the location where you want to store the
macro. If you want a macro to be available whenever you use Excel, select
Personal Macro Workbook.

o If you want to include a description of the macro, type it in the Description
box. Anything you type here will show up as green commented text in the
macro module.

VBA Excel 2013/2016

Record Macro l @ &J
Macro name:
Macro
Shortcut key:
Ctrl+
e e 5
Description:
Cancel
Look at the bottom right corner of the status bar in Excel. You should see a macro
button.
{Sheeﬂ Sheet2 Sheet3
Ready 'l_'l

The macro button is just to the right of the word “Ready”. You can click on this
button to open the Record Macro dialog box. Once you are recording you can
click this button again to stop the macro from recording.

Sheetl Sheet2 Sheet3

Ready M

The macro button changes when recording, depending on the Excel version it will
be white or black.

Recording a macro

The Macro Recorder works like a tape recorder. Whereas a tape recorder records
all the sounds, Excel recorder records all the actions that you perform when you
work in Excel.

In the next few steps you will record two macros. These macros will be stored in
the Sort&Filter.xIsm workbook.

1. Click the View tab, pointto Macro, click the down arrow to open the
menu and click Record Macro...on the menu.

| View Macros

#3 Record Macro...
ﬁ Use Relative Refer[&es
Notice: The macro button has two parts; the top half opens the Macro dialog box

used to see macros you have already recorded. You will use the top half later in
the book.

The bottom half opens the menu that you will be using in this lesson.

10

VBA Excel 2013/2016

Your screen should look like this.

Record Macro @&J

Macro name:

Shortcut key:
Ctrl+

Store macra in:
This Workbook IEI

Description:

b ’

Notice you have four items to complete as explained in the bullet points above.

2. In the Macro name: text box type: TurnOnOffAutoFilter

AutoFilter is a toggle menu for on or off.

3. Click in the Shortcut key: text box, and press: Shift + A

Your screen should look like this.

Record Macro s @lﬁ ,.

Macro name:
lTurnOnOf‘fAutoFiIter

Shortcut key: Store macro in:
ctri+shift+{Al [This Workbook |
4, In the Macro name: text box type: TurnOnOffAutoFilter

AutoFilter is a toggle menu for on or off.

5. Click in the Shortcut key: text box, and press: Shift + A

Your screen should look like this.

Record Macro s @lﬁ |

Macro name:
| TurnonOffAutoFilter

Shortcut key: Store macro in:
Ctrl +Shift+rAT IThis Workbook ﬂ

11

VBA Excel 2013/2016

Notice your shortcut key is now, Ctrl +shift + A. You have assigned a shortcut
key. Remember any shortcut key you assign will over write Excel’s shortcut keys.
Your shortcut key is senior and become the primary.

If you need to assign a macro after you have created your macro, you will need
to click the Options button in the Macro dialog box.
6. In the Store macro in: drop down leave “This workbook” as the selection.

7. In the Description: text box, select the text and type:
My toggle for Filter

8. Click the OK button to turn on the recorder.

At the bottom, your screen should look like this.

{Sheeﬂ Sheet2 Sheet3

Ready [|

Notice the black or white square box (depending on your Excel version) on the Status
bar. This is now the Stop Recording button. You can also click the down arrow for
the Macros menu and select Stop Recording.

9. Click on the cell F5.
10. Click the Data tab, pointto Filter and click the Filter button.
11. Click the Stop Recording button.

{ Sheetl Sheet2 Sheet3

Ready

You have completed all the step needed and you have created your first macro.
Recording your second macro
Your second macro will be to select Bremerton as the filtered item.

1. Click the View tab and click the Macros down-arrow.

2. Click the Record Macro.. menu.

= View Macros

¥ Record Macro... %
ﬁ Use Relative Referefrces

3. In the Macro name: text box type: MyBremerton.

4. Click in the Shortcut key: text box, click in the box and press: Shift + B

12

Your screen should look like this.

Record Macro

Macro name:

IMyBrememn

Shortcut key:
Ctrl+shift+B|

Store macro in:
IThis Workbook LI

Notice your shortcut key is now, Ctrl +shift + B.

5.

Testing your recorded macro shortcut keys

1.

2.

Now the shortcut key turn the Filter back on.

3.

VBA Excel 2013/2016

In the Description: text box, select the text and type: My Bremerton
filtered list.

Click the OK button to turn on the recorder.

Click the down arrow for Division, uncheck Select All and check

Bremerton.

Click the Stop Recording button.

» M| Sheetl Sheet? . Sheet3 . !

LR
Ready | @ |

You have now created the second macro.

Press the shortcut key: Ctrl + Shift + A

Remember the Filter is a toggle and this turns it off.

Press the shortcut key: Ctrl + Shift + A

Press the shortcut key: Ctrl + Shift + B

Now only Bremerton is showing.

Your screen should look like this.

EMP124
EMP131
EMP138
EMP145
EMP152
EMP159
EMP166
EMP173
EMP180
EMP187

Liza
Sheryl
Ari
Burt
Randy
Mary
Alice
Jules
lain
Sam

Backup Floor
Pepper Park
Training Region
North Bank
Docking Range
Backup Floor
Pepper Park
Training Region
North Bank
Docking Range

EmplD «|FirstNan v|LastNai v|DateHir¢ v|Dept Coc v|DeptName w|Division
Able 4-Jul-02 BF
Bankler 20-Oct-02 PP
Bellwood = 25-Nov-02 TR
Chu 14-Sep-02 NB
Cummins 9-Aug-02 DR
Fontaine 22-Jul-02 BF
Hapsbuch ~ 7-Nov-02 PP
Kaneko 2-May-02 TR
Lempert 2-Oct-02 NB
McKormicl 27-Aug-02 DR

Bremerton
Bremerton
Bremerton
Bremerton
Bremerton
Bremerton
Bremerton
Bremerton
Bremerton
Bremerton

32
40
40
40
40
36
40
40
32
40

22.25
14.00
18.00
23.00
21.00
15.45
23.00
17.00
24.00
22.00

v|Hours +|PayRat v|GrossP. v

712
560
720
920
840
556.2
920
680
768
880

13

VBA Excel 2013/2016

Testing your recorded macro from the menu

1. Click the view tab (if needed) and point to Macro and click the down-
arrow.

2. Click the View Macros menu.

—
|Macros|

-

= View Macros

#3 Record Macro...
i E200 tew Macros (Alt+F8)

@ Use Relative Refer

Your screen should look like this.

e

g List of macros in this
Macro name: workbook
'PERSOMAL number 2. xlsb" adgblanks to run the macro Se|ected
MyBremerton

TurnOnOfFAutoFilter Step through your code

edit your macro in VBE
to create a macro in VBE

Delete to delete you macro

_| | ontions... to add, change hotkey or
add change description
Mamos in: | A - |
Description
to close the Macro dialog box

3. Select the TurnOnOffAutoFilter from the macro list window.
4, Click the Run button in the Macro dialog box.

Your filter is turned off.

5. Click the down-arrow and click View Macros.

6. Select TurnOnOffAutoFilter from the macro list window.
7. Click the Run button in the Macro dialog box.

Your filter is turned on.

14

8.
9.
10.

VBA Excel 2013/2016

Click the down-arrow and click View Macros.
Select MyBremeton from the macro list window.
Click the Run button in the Macro dialog box.

Your screen should look like this.

| EmplD Rd FirstName Rd | astName Rd DateHired ji¢

EMP124 Liza Able 4-Jul-02 BF Backup Floor Bremerton 32 22.25 712
EMP131 Sheryl Bankler 20-Oct-02 PP Pepper Park Bremerton 40 14.00 560
EMP138 Ari Bellwood 25-Nov-02 TR Training Region Bremerton 40 18.00 720
EMP145 Burt Chu 14-Sep-02 NB North Bank Bremerton 40 23.00 920
EMP199 Linda Chu 14-Sep-02 NB North Bank Bremerton 40 23.00 920
EMP152 Randy Cummins 9-Aug-02 DR Docking Range Bremerton 40 21.00 840
EMP206 Randy Cumminston 9-Aug-02 DR Docking Range Bremerton 40 21.00 840
EMP213 MaryAnne Fontaine 22-Jul-02 BF Backup Floor Bremerton 36 15.45 556.2
EMP166 Alice Hapsbuch 7-Nov-02 PP Pepper Park Bremerton 40 23.00 920
EMP159 Mary Hodge 22-Jul-02 BF Backup Floor Bremerton 36 15.45 556.2
EMP173 Jules Kaneko 2-May-02 TR Training Region Bremerton 40 17.00 680
EMP173 Jules Kaneko 2-May-02 TR Training Region Bremerton 40 17.00 680
EMP180 lain Lempert 2-Oct-02 NB North Bank Bremerton 32 24.00 768
EMP187 Sam McKormick 27-Aug-02 DR Docking Range Bremerton 40 22.00 880

View my macro code in the VBE

There are a few things to know before you jump into the Visual Basic Editor.

Let’s start with code that you will be viewing and a few other items.

Code: black text for instructions, blue for key words in code and
green text for comments for humans to read.

o Instructions, operators and variables will be
black text
o Keywords: terms that have special meaning will
be blue text
o Comments: text for only humans to read will be
green text
Module: VBA modules are stored in an Excel workbook in folders that can

be viewed using the VBE. Your VBA code is stored in the module sheet.
You can have many module sheets and you can name them.

Procedures: A procedure is the basic unit of computer code that performs
an action. There are two procedures; Sub procedure and Function
procedure.

15

VBA Excel 2013/2016

16

Sub and End Sub: A sub routine consist of a single or many statements
that can be executed in many ways.
Example:

Sub Test()
Sum=1+1
MsgBox “The answer is “ & Sum

End Sub

Function: Just as its name implies you can create your own functions
using the power of VBA. Example:

Function AddTwo(argl, arg2)
AddTwo = argl + arg2
End Function

Objects: VBA manipulates objects; active objects would be workbooks,
sheets, and ranges. Example: worksheets(“Sheet1”).range(“A1”)
VBA variables: You can assign values to VBA variables. (Interest is the
variable below)

Example: Interest = worksheets(“Sheet1”).Range(“A1”).Value

Object methods: A method is an action that is performed with the object.
Example: Range(“A1”).ClearContents

Standard programming constructs: VBA can and does all of the
standard programming language items; for — next, If — then, Case and
loops etc.

Events: Excel VBA recognizes specific events, for example; Workbook
open or close, object is clicked (called focus), keyboard is pressed,
worksheet is activated or deactivated, and cell is entered or edited. Many
more...

To enter the VBE, you can click on the Developer’s tab, Code group and
click Visual Basic button or press the Alt + F11 keys.

Double click the Modulel sheet in the Modules folder.

VBA Excel 2013/2016

Your screen will look like this.

i 1
Mo
File Edit View Inset Format Debug Run Tools Add-ns Window Help
a3-d @ o »on m b S E | @ 2o, coi 5
Project - VBAProject x|
-] Sort&Filter.xls - Modulel (Code)
o= & [(Code)
- [| [myBremeton
& VBAProject (Book1) !
=88 VBAProject (Sort&Filter.xis) Sub TurnOnOffAutoFilter ()
455 Microsoft Excel Objects i
Sheet1 (Sheet1) nOE£AUT
Sheet2 (Sheet?) toggle for
Sheet3 (Sheet3) o
4€] Thisworkbook ' Reyboard Shortcut: Ctrl+Shift+h
45 Modules o
¥ Module1 Range ("F5") .Select
Selection.AutoFilter
End Sub
Sub MyBremeton ()
meton Macro
Bremerton filtered list.
' Keyboard Shortcut: Ctrl+Shift+B
Selection.AutoFilter Field:=7, Criterial:="Bremerton"”
Properties - Modulel x| End Sub
| Module1 Module -
Alphabetic | categorized |
Module1 |

Depending on how much you get into VBA you may or may not need to know
everything you have access to in the VBE. In this booklet, only the main items that
will be used will be descripted.

| 2 Microsoft Visual Basic - Sort:
= Microsoft Visua ortéFil

File Edit View Insert Format Debug Run Tools Add-Ins Window Help

Ha-d B#éa o o om B B Y (@) | Ln2o, Coll .

Project - VBAProject x| % .. Macro code
Sort&Filter.xls - Modulel (Code)
B .
= | G 1} yBremeton
-8 VBAProject (Book1)
&} VBAProject (Sort&Filter.xs) Sub TurnOnOffButcFilter() M
25 Microsoft Excel Ohjects '
Sheetl (Sheet1) ' TurnOnOffAutoFilter Macro
Sheet? (sheet?) LN rooole For oo Eilrgo Project window
Sheet3 (Sheet3) g
-§& | ThisWorkbook ' Kevb d Shortcut: Ctrl+Shift+a
&Edmeﬁs OrkDool , eyboar nortcu r ni gt modules for code
L8 Module1 = Range ("F5") .Select

L Properties window

Selection.AutoFilter
End Sub __/

Sub MyBremeton{)
'

MyBremeton Macro

'
' My Bremerton ed list.
'

Fevyboard Shortcut: Ctrl+5Shift+B

/ Selection.ButoFilter Field:=7, Criterial:="Bremerton"
Properties - Modulel x| End Sub

|Mo|lule1 Module j
Alphabetic] Categorized]

Module1 | |

Under the View menu you will find the menu items for Project Explorer and
Properties Window, with shortcut keys.

|& Project Explorer | Ctrl+R ‘
Properties Window l’% 2

17

VBA Excel 2013/2016

You can run some macros from within VBE but not all. You can use the Break and
Reset for your macros, you will learn how to use those latter in this booklet.

Run | Tools Add-Ins W,

» Run Macro F5
| P]

= 11 Break Ctrl-ﬁ@reak
k¢

-

m Reset

You can also view your macro dialog box from inside the VBE.

Tools | Add-Ins Window Help

- #2 References...

= =
2 V
__‘ Macros... n _
|| thions...l/@ o

When you have a number of macros in a module sheet you can select one from
the drop-down list (top right side) to reach the code on the module scheet.

42 Sort&Filterxs - Modulel (Code) o a2)
| (General) l] lMyBremeton

Sub TurnOnOffRutoFilter () {Deciarations 3

TurnOnOffAutoFilter

' TurnOnOffAutoFilter Macro
' My toaale for AntaFilrer

This will select the macro and bring the macro code to the top of your screen.

A Sub procedure (the basic structure of a macro)

Procedure name

Sub is keyword Arguments (optional)

-

|(Getral} *. f“j |TurnOnOffAutoFiIer

Sub TurnonOffiuntoFiler()

TurnOnOffintoFiler Macro
My toggle for AutoFilter

' Kevboard Shortcout: Ctrl+4Shift+d
Bange ("F5") .Select
SJelection.AutoFilter
End Sub
The black text are the
commands, what the

macro will do.

End Sub is keyword

18

VBA Excel 2013/2016

The parts you see here in the screen shot above are broken down into:

Sub and End Sub - keywords

Comments - easy to read information that describes what the macro and
commands are all about.

Statement block — the executable commands, what the macro code will tell Excel
to do

19

VBA Excel 2013/2016

Section 1 — Review

You must be able to answer the following questions on your own. As you review
the questions below, write in your answer below each one.

1. What is the first character a macro should start with?

2. What color are comments in a sub routine?

3. What is the shortcut key to open the VB Editor?

4. Can you have more than one module in a workbook?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section
for additional information. Example: AutoSum, AutoFilter.

20

VBA Excel 2013/2016

SECTION 2 ¢ ASSIGNING MACROS

What will | learn in this section?

Relative References in macros
Assign Macro to a button or QAT

21

VBA Excel 2013/2016

LOCATION OF RECORDED MACRO

When you record a macro, its code is recorded in a module in the active
workbook. You can select another workbook or the Personal.xls workbook. If you
would like the macro you record to be globe, meaning you can run the macro
regardless of the workbook you open then record the macro in the Personal.xls
workbook.

If a macro is recorded in the wrong workbook the macro can be copied from one
module to another module.

Absolute or Relative macro recording

Just like formulas that are relative reference or absolute, when you record a
macro it can be one or the other. When using Absolute; if you click on cell D2,
then when you run the macro D2 is used. But the Relative works by moving the
same number of cells based on the action during the recording. Example would be
that with relative if you pressed the Enter key the action would be that you moved
down one cell.

You will do two macros in this section; one absolute and one relative. Then take a
look at how the code is different.

Using Absolute

1. Right click one of the tabs of your ribbon.

Dat Customize Quick Access Toolbar...

k3| Conr Show Quick Access Toolbar Above the Ribbon

Customize the Ribbon...

Minimize the Ribbon 5
hnectiorrs SUTCSUTIIET

2. Select the Customize the Ribbon... menu.
3. Click the check box next to Developer.

[+ !J View
Developer

4, Open Absolute&Relative.xlIsx class file.

22

5. Click the Record Macro button.
|;E;d; lblﬁtl iheetz
6. Type: TitleMyAbsolute for Macro name.
7. In the Description box type: Use Absolute title for heading.
Macro name:
TitlngAbgqlupg
Shortcut key: Store macro in:
Crl+| [This Workbaok Al
Qescription:
Use Absolute title for heading.
[OK] [Cancel]
8. Click the OK button to start recording.
9. Click in C2 and type: Western Region
10. Press [Enter] and type: First Quarter Sales
11. Press the [Enter] key.
12. Select cell C2 and drag to cell F2.
13. Click the Merge and Center button.
E - Merg[;}& Center ~
14. Select cell C3 and drag to cell F3.
15. Click the Merge and Center button.

= A hv1er1§: Center ~

Your screen should look like this.

VWestern Region
1 First Quarter Sales |

Sales

Jan Feb

Mar

Totals

16. Click the Stop Recording macro button.

VBA Excel 2013/2016

23

VBA Excel 2013/2016

Viewing Absolute code

1. On the Developer’s ribbon, click the Visual Basic button.
Visual Macrog
Basi([

2. Verify that Module 1 is selected in the open workbook.

Your screen should look like this.

- @ ¥BAProject {(Absolute&Relative.xls) !

-5 Microsoft Excel Objects
B Sheet1 {Sheet1)
Sheet2 {Sheet2)
B8] Sheet3 (Sheet3)
4 Thisworkbook
=I5 Modules
%
+ @ ¥BAProjec!
-- &% vBAProject

meRanges.xls)
ERSONAL.XLS)

Sub TitleMylbhsolute()

' TitleMyidbsolute Macro

! Use Absolute title for heading.

Range ("C2") .Select
AetiveCell.FormulaR1C1

"WMestern Region"

Examine the code with your instructor. Notice the actual cell addresses used.

3. Close the Visual Basic Editor.

Running Absolute

1.
2.

Select Sheet2 and click on cell A1l.
Run the TitleMyAbsolute macro.

Your screen should look like this.

Cc3 v A& First Quarter Sales
A | B [DECHREDREERREE G |

1
2 Yestern Region
3 | First Quarter Sales |
4
5
5] Sales

24

VBA Excel 2013/2016

Using Relative

1. Select Sheet3 and click on cell C2 to select.

2. Click the Relative Reference button on the Macros menu. (Relative
References is on)

[
—
=z
Macros

| View Macros

S Record Macro...

E Use Relative Refe'qnces

3. Click the Record Macro button.

Wy >IS’eet1 Sheet2
L Ready | 4 | N

4, Type: TitleMyRelative for Macro name.
5. In the Description box type: Use Relative title for heading.

. Record Macro @

Macro name:
| TitlemMyRelative
Shortcut key: Store macro in:
Chrl+ This Workbook v
Description:
ste Relative title For heading.

[OK] [Cancel

Click the OK button.
Type: Western Region (in cell C2) and press [Enter].
Type: First Quarter Sales and press [Enter].

Select C2 and drag to F2.
10. Click the Merge and Center button.

© © N o

F ~a h'1er1$: Center ~

11. Select C3 and drag to F3.
12. Click the Merge and Center button.

F ~a MHT}& Center ~

25

VBA Excel 2013/2016

Your screen should look like this.

YWestern Region
| First Quarter Sales |

Sales

Jan Feb Mar Totals

13. Click the Stop Recording macro button.

4 4 » M| Sheetl ~Sheet? . Sheet3 . ¢
Ready | @ |

Testing Absolute and Relative macros

The Absolute macro will always place your information in the same location. No
matter where the active cell maybe the titles in the macro will always end up on
the second and third roll between the C and F column.

You will see that the Relative macro will place the title where you place the
active cell.

1. Click on Sheet4 and click on cell J24.
2. Run the TitleMyAbsolute macro.

(Hint: Tools, Macro, Macros)

Macro name: ,

TitlehyAbsolute JEF
PERSOMAL.XLSlinsertarow Al
PERSOMNAL.%LS!makeitbold
i TitlerMyAbsolute

1 TitleMyRelative Step Into

Notice the heading is placed in between column C and F, on row 2 and 3.
3. Click on cell K8.
4. Run the TitleMyRelative macro.

Macro name:

THieHyRelative [
| PERSONAL.XLSlinsertarow wl
| PERSONAL XLSImakeitbold |
| TitleMyAbsolute

i TitleMyRelative

|

Notice the heading is placed from K8 to K9, merged and centered.

Step Into

Hl

26

VBA Excel 2013/2016

Viewing code of both Absolute and Relative macros

1. On the Developer’s ribbon, click on the Visual Basic button.

——

Visual Macrog

Basiclk

R, ye—

Your screen should look like this.

i 7 Microsoft Visual Basic - AbsolutetRelative.xls

W: Fle Edit Wew Insert Format Debug Run Tools Add-Ins ‘Window Help
§§*H|;, EEWEE W W) upon @ bR @)

| Project - YBAProject

%] | ;
- AbsolutefiRelative.xls - Module1 {Code
ST J [e
B (General) - TitleMyRelative
e & maExcel {(MetadataAssistant.xla)
- @ ¥BAProject (Absolute&Relative.xls) Sub TitleMydbsolute()
-5 Microsoft Excel Objects !

BH] Sheet1 (Sheet1) ! TitleMyibsolute Macro

@ Sheet2 (Sheet2) ! Use Absolute title for heading.
BH] Sheet3 (Sheet3) !
BH] Sheet4 (Sheet4)
4] Thisworkbook

=5 Modules Range ("C2") .Select
4{ '}:ctiveseli.l"orr‘nulaRlcl = "Jestern Region"
2. If the Project — VBAProject pane is not open, press the Ctrl + R hotkey.
3. If the Module1 window is not open, double click on the Modulel icon in the

project pane.

& Thisworkbook
=5 Modules

+ @ ¥BA| pject (PERSONAL.

Code for Absolute

fFub TitleMyibsolute()
!
' TitleMyibsolute Macro

' Use Absolute title for heading.
1

Notice the cell
. / address, this
(Range("'cz"j _s.alect) command selects C2

AetiveCell.FormulaR1C1l = "Western Region™

Bange (MCEM) L Select This command directs
@ctiveCell f FDrmulaRlCD= ﬂ_irst Quarter Sales" the text to go in the

Range ("CZ:FzZ") .3elect Active Cell

27

VBA Excel 2013/2016

Code for Relative

Suk TitleMyRelative () N
' Notice the Offset command,

' TitleMyRelative HNacro the (1, 0) directs the active
' U=e Relatiwve title for heading. cell to move down one row.
The first number is up or
down the rows. The second
number is left or right for
ActiveCell.Offsec (1, 0O) .Range ("Al1™) .Select columns.
AetiveCell . FormulaR1C1l = "First Quarter Sales™ Using this command you
AetiveCell .Off=sec (-1, 0) .Range ("L1:D1") .3elect can place the active cell any

where on the sheet.

Assigning your macros to menus, buttons and toolbars

After a macro has been created you might like to have a button on your toolbar to
quickly run your macro(s).

As you have seen earlier shortcut keys can be used also. But assigning buttons
and menus is easy to do.

Adding a button to your toolbar

1. On the Developer's ribbon, click Insert button and click the Button in the
Form Controls row.

sl | by/‘ & Properties
S | L -
N | & View Code
| Insert |Design)
B v | Mode H RunDialog

| | Form Controls

ﬁﬂﬁpﬂﬂ“

2. Drag the mouse plus from H2 to J3 and release.

3. In the Assign Macro dialog box, click on TitleMyRelative and click OK.

Assign Macro |_I_J@ X s
Macro name:
utton1 Click {;ii] New
TitleMyAbsolute -
TitleMyRelative

4, Drag across the text: Button 1

H | J

0 [
Button 1 ,L,

Notice an | beam will appear when the pointer is next to the “B’.

5. Type: My Relative Title
28

VBA Excel 2013/2016

6. Click a blank cell in the spreadsheet to activate the button.

Testing your button

1. Select the cell H24 on Sheet4.

2. Click your new button.
Your heading is placed, starting with H24 to K24.

Adding a new button to the Quick Access Toolbar

1. Click the More button on the Quick Access Toolbar.

"?R?omize Quick Access Toolbar]

F G H

2. Click the More Commands... menu .

v | OpenRecent File

More Commands...
I Show Above the Rib&w

N — P —

3. Click the down-arrow for “Choose commands from:”.

Choose commands from: i
*_ Popular Commands E]

Popular Commands
Commands Not in the Ribbon
All Commands

_

4. Select Macros from the menu.

>

o1

In the list of macros, select TitleMyRelative.

o TitleMyAbsolute
.+ TitleMyRelative

=]

6. Click the Add > > button in the middle of the dialog box.

Remove

The macro has been added to the Quick Access Toolbar.

29

VBA Excel 2013/2016

Add an Icon to the QAT for your macro

1. Click the Modify... button.

Customizations:

Import/Export ¥ |

2. In the Modify Button dialog box, click the symbol you would like for your
macro button.
(" Modify Button)
Symboal:

FEO00A T ¢ HuH
OnEEaN AR Dwen«
avr@FBT2.8QT
TREODLHL 8 0RILD
BELVHOsT a2l OM
O0O0O0OO0O00 @ ok |

| »

m

eDUeME I B %%
AJAX vEEORT & i
Pl@ISDIOedvan ~
Display name: | TileMyRelative

[OK. J[Cancel]

L A

3. In the Display name: text box, type: Title My Relative.

Example:

Display name: My Relative Title

[OK] [Cancel]

4. Click the OK button to close the dialog box.

30

VBA Excel 2013/2016

Section 2 — Review

You must be able to answer the following questions on your own. As you review
the questions below, write in your answer below each one.

1. Where can you find the Relative button to record your macro relative?

2. If you record a relative macro how is this different?

3. Where can you find a macro button to add to the Quick Access Toolbar?
4. How do you assign a macro to a button?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section
for additional information. Example: Macros, VBA.

31

VBA Excel 2013/2016

32

SECTION 3 ¢ MAKE DECISIONS

What will | learn in this section?

IF ... ELSE ... END IF
DO... LOOP
FOR... NEXT

SELECT CASE ... CASE IS...
WORKING WITH RANGES

VBA Excel 2013/2016

33

VBA Excel 2013/2016

Making Decisions with code

There are a number of ways to use code to help make decisions. In this section
you will first take a look at If... Then statement and the Do... Loop statement.
You will end up with For... Next statement.

With the If statement you have a conditional statement. Such as X=2 or another
example is “book” =

“book”.
Operator Symbol | Operator meaning
< Less than
<= Less than or equal to
> Greater
>= Greater than or equal to
= Equal to
<> Not equal to

When creating the If statement it can be one line execute or multiple lines.

Single-line

If Alcontent = Blcontent Then ActiveCell.Font.Bold = True

Multiple-line

If Alcontent = Blcontent then

Activecell.Font.Bold = True

Selection.NumberFormat = "m/d/yy"

34

VBA Excel 2013/2016

End If
Multiple-line Else

If Alcontent = Blcontent then
Activecell.Font.Bold = True

Selection.NumberFormat = "m/d/yy"

Else

Activecell.Font.ltalic = True

End If

Now a little about how a Do — Loop statement works. Do loops are great tools to
have when you are working with your spreadsheet. They will until a condition is
met or until a condition is changes to something.

In our example (after the IF) you will have the loop continue until it encounters a
blank cell.

Understanding the DO...Loop syntax:

Do Do
Statement Statement
Loop while condition Loop until condition
Examples:
Do Do
ActiveCell > 5000 then ActiveCell.Font.Bold = True ActiveCell > 5000 then ActiveCell.Font.Bold = True

”n ”n

Loop while activecell <> Loop until activecell =

35

VBA Excel 2013/2016

In the next few steps you will build an If statement to check to see if a number is
over 5000 and if it is make it bold.

1. Open the file IfCase.xlsm.
2. Click on cell C2.

3. Press the hotkeys ALT + F11
This will open the VBA editor.

4, Right click on the Microsoft Excel Objects folder under VBAProject

(IfCase.xls).
- &% ¥BAProject (IfCase.xls)
= @W Cells.Spe
H) 4 = VIE o0e Selectior
B 4 =l View Object Range ("4l
End Sub
VBAProject Properties...
-1 &8 "_’B“P"Ul Insert >| -3l UserForm
+- [7] Micr)
-85 Mod Import File... L@g l_‘fo\dule |
«& f Export File. .. g‘} df& Module
5. With the mouse point to Insert menu, then click the Module menu.

Your screen should look like this.

](General)

¥ 3 makExcel {(MetadataAssistant.xl:
=l @ ¥BAProject (IfCase.xls)
= #5 Microsoft Excel Objects
#) Sheet1 (Sheet1)
B8 Sheet2 (Sheet2)
#) Sheet3 (Sheet3)
& Thisworkbook
=3 Modules
¥ Modulet

You now have a Modulel.

6. Type: Sub MyFirstlf()
7. Press the [ENTER] key.

36

VBA Excel 2013/2016

Your screen should look like this.

|(General)

Sub MyFirstIf()

End Sub

8. Type: If ActiveCell > 5000 then ActiveCell.Font.Bold = True
9. Click the Save button in the Visual Basic Editor.

Testing your If statement

1. Click the Macros, View Macros menu item

=

|Macros|

v

== | View Macros

o ==

2. Run the macro MyFirstlf.

Macro name;

,,,,, | —

3. The cell C2 should now be bold.

A B [cm]— D E
Apr May Jun
1 Widget 201 2310 2430 2520
2 Widget 202 5230 4870 5440
3 Widget 203 3450 3670 3980

Now let’s take the IF and have it check all the numbers. To do this you will need
the macro to move the active cell during the process of checking. First you will
record a macro to move down one cell. This is a quick way to generate code
without the need to look it up.

Once you have recorded the code, you will take that recorded code and add it to
your MyFirstIf macro.

37

VBA Excel 2013/2016

Turn on the Relative Reference

You want to use this code in different columns, so an absolute is not needed in
this case. You will need to use relative for the macro to work correctly.

1. On the Developer’s ribbon, click the Use Relative References if needed.

¥ Record Macro

E‘i Use Relative References |
3

rs i

2 Click Record Macro button and name the macro MoveDownOne.
3 Confirm the dialog box is set to Store macro in: This Workbook.
4, Click OK to start the macro.

5 Press the [ENTER] key and click the Stop Recording button.

Copying Code

Press ALT + F11 to open the Visual Basic Editor.

Double click the Module2 to see the new macro and code.

Copy: ActiveCell.Offset(1 , 0).Range("Al").Select

Double click the Modulel folder to see the macro MyFirstlf.

Place the cursor at the end of the word True and press [ENTER].

o o B~ w bdoE

With the cursor under your IF statement, click the Paste button.

Your screen should look like this.

|(General) Ll

Sub MyFirstIfi()
If ActiveCell > 5000 Then ActiveCell.Font.Bold = True
betiveCell . Offset (1, 0) .Range ("Al1™) .Select

End Sub

7. Click the Save button to save the macro code.
Adding Do.. Loop statement

In the macro above one of the problems is the macro is not checking each number
in the list. So, you need some code that will check the first number, then move

38

VBA Excel 2013/2016

down one row and check the next number. This needs to continue until all the
numbers have been checked.

The Do loop statement is idea for repeating a process over and over until a
condition is met or changes. You will now add the Do Loop to your current macro
to have it repeat the two steps until the macro reaches an empty cell.

Press ALT + F11 to open the Visual Basic Editor.

Double click the Modulel to see the macro MyFirstIf and code.
Click at the end of the "Sub MyFirstlf()" line and press [ENTER].
Type: Do

Click at the end of the "ActiveCell.Offset(1, 0).Range("Al1").Select" line and
press [ENTER].

6. Type: Loop Until Active Cell = "

o w e

Your screen should look like this.

I(Gener.\l) .:J

Sub MyFirstIf()
Do
If ActiveCell > 5000 Then ActiveCell.Font.Bold = True

ActiveCell.Offset (1, 0) .Range ("4l1"™) .Select
Loop Until ActiveCell = "7

End Sub

Notice the loop statement: Loop Until ActiveCell =

With this statement you are asking the Do Loop to process the code in between the
do and the Loop statement but before it is repeated again check the active cell to
see if it is empty or not. If the active cell is empty the loop will not continue. If the
cell is NOT empty VB will jump back up to the DO and process the code again.

Testing the Do Loop

1. Select C5 on Sheet? in the IfCase.xls workbook.
2. Run the MyFirstlIf macro.

Macro name: -
| MyFirstIf

W

3. The cell C2 should now be bold.

39

VBA Excel 2013/2016

A B | C ; D E
Apr May Jun
1 Widget 201 2310 2430 2520
2 Widget 202 5230 4870 5440
3 Widget 203 3450 3670 3980

Now let’s take the IF and have it check all the numbers. To do this you will need
the macro to move the active cell during the process of checking. First you will
record a macro to move down one cell. This is a quick way to generate code
without the need to look it up.

Once you have recorded the code, you will take that recorded code and add it to
your MyFirstlf macro.

You want to use this code in different columns, so an absolute is not needed in
this case. You will need to use relative for the macro to work correctly.

1. On the Developer’s ribbon, click the Use Relative References if needed.

¥ Record Macro

E Use Relative References |
E

ra .

2 Click Record Macro button and name the macro MoveDownOne.
3 Confirm the dialog box is set to Store macro in: This Workbook.
4, Click OK to start the macro.

5 Press the [ENTERY] key and click the Stop Recording button.

Copying Code

Press ALT + F11 to open the Visual Basic Editor.
Double click the Module2 to see the new macro and code.

Copy: ActiveCell.Offset(1, 0).Range(" A1").Select

1

2

3

4. Double click the Modulel folder to see the macro MyFirstlf.

5 Place the cursor at the end of the word True and press [ENTER].
6

With the cursor under your IF statement, click the Paste button.

40

VBA Excel 2013/2016

Your screen should look like this.

{(General) L’

Sub MyFirstIf()
If ActiveCell > 5000 Then ActiveCell.Font.Bold = True
AetiveCell. Offset (1, 0) .Range ("Al1l™) .Select

End Sub

7. Click the Save button to save the macro code.

Testing your new If statement

1. Select the cell C6 and click the Bold button to remove bold.
2. Select the cell C5.

3. Run the MyFirstlf macro.
What happen to the numbers in the list?

What is the macro doing at this point?

How can we make it work?

Adding Do.. Loop statement

In the macro above one of the problems is the macro is not checking each number
in the list. So you need some code that will check the first number, then move
down one row and check the next number. This needs to continue until all the
numbers have been checked.

The Do loop statement is idea for repeating a process over and over until a
condition is met or changes. You will now add the Do Loop to your current macro
to have it repeat the two steps until the macro reaches an empty cell.

Press ALT + F11 to open the Visual Basic Editor.

Double click the Modulel to see the macro MyFirstIf and code.
Click at the end of the "Sub MyFirstlf()" line and press [ENTER].
Type: Do

Click at the end of the "ActiveCell.Offset(1, 0).Range("Al1").Select" line and
press [ENTER].

6. Type: Loop Until ActiveCell = ™ ™

o~ w NP

41

VBA Excel 2013/2016

Your screen should look like this.

|(Generah

Do

End Sub

Sub MyFirstIf()

AetiveCell.Offset (1,
Loop Until ActiveCell = ™"

If ActiveCell > 5000 Then ActiveCell.Font.EBold
0) .Range ("41") .Select

True

Notice the loop statement: Loop Until ActiveCell =

With this statement you are asking the Do... Loop to process the code in between
the Do and the Loop statement but before it is repeated check the active cell to
see if it is empty or not. If the active cell is empty the loop will not continue. If the

cell is NOT empty the code will be repeated again.

Testing the Do Loop

1. Select C5 on Sheet2 in the IfCase.xlsm workbook.

2. Run the MyFirstlf macro.

Your screen should look like this.

4

58 1 Widget 201
6| 2 Widget 202
78 3 Widget 203
8 | 4 Widget 204
ol 5 Widget 205
10| 6 Widget 206
11| 7 Widget 207
12| 8 Widget 208
31 9 Widget 209
14| 10 Widget 210
15| 11 Widget 211
16| 12 Widget 212
17| 13 Widget 213
18| 14 Widget 214
19| 15 Widget 215
20 16 Widget 216
21| 17 Widget 217
22 18 Widget 218
23| 19 Widget 219
24| 20 Widget 220
25 Widget 221
26 22 Widget 222
27| 23 Widget 223
28 24 Widget 224
29| 25 Widget 225
30

Apr

2310
5230
3450
4390
2310
5230
3450
4390
2310
5230
3450
4390
2310
5230
3450
4390
2310
5230
3450
4390
2310
5230
3450
4390
5002

May

2430
4870
3670
5321
2430
4870
3670
4010
6842
4870
3670
4010
2430
7890
3670
5213
2430
4870
3670
4010
2430
4870
3670
4010
3872

Jun

2520
5440
3980
4580
2520
5440
3980
4580
2520
5440
3980
4580
2520
5440
3980
4580
2520
5440
3980
4580
2520
5440
3980
4580
4218

Now that you have learned how to repeat a process you can expand your

selections by using the Select Case statement.

Understanding the SELECT CASE syntax:

42

VBA Excel 2013/2016

Select Case {expression}

Case Is {value 1}
Statement

Case Is {value 2}
Statement

Case Is {value 3}
Statement

Case else (optional)

Statement

End Select

Example of a Case statement:
Select Case ActiveCell
Case Is <4000
Selection.Font.Colorindex = 7
Case Is <5000

Selection.Font.Colorindex = 5
Case Is < 6000

Selection.Font.Colorindex = 3
End Select

In your next macro you will use a Select Case to check the size of the numbers and
based on the size of the number give them a color.

In the Microsoft Visual Basic Help you can look up the Pattern Colorindex
Property to find the below table of colors.

43

VBA Excel 2013/2016

The following illustration shows the color-index values in the default color palette.
1B 2] 3B 48 5B s[] W
s[] o ol R 2@ 130 148
15[] 6] 17[] el 19[] 20[] 27
22[] 23 24[] 251 26 27[] 258[]
291 o0l 31 320 330 34[] 350
36[] 37[] 38[] 39[] 40] 1| 42[]]
43 440 450 460 470 450 49
Ol 51 52 53 54 55 S50

Color is a great way to have items on your spreadsheet show up and be easily
identified.

1. In Modulel type the following code above the MyFirstlf macro:

Sub colorformatting ()
Do

Select Case ActiveCell
Case Is < 4000

Selection.Font.ColorIndex = 7
Case Is < 5000
Selection.Font.ColorIndex = 5

Case Is < 6000
Selection.Font.ColorIndex = 3
End Select
ActiveCell.Offset (1, 0) .Range ("&1l").Select
Loop Until ActiveCell = """
End Sub

Notice that you are using the Do Loop and the line of code that moves the
active cell down one. Here you are beginning to add code that you have
already learned to make your code more versatile.

2. After the macro is complete, select D5 on Sheet?2 in the IfCase.xIsm
workbook.

3. Run the colorformatting macro.

44

Your screen should look like this.

Apr

2310
5230
3450
4390
2310
5230
3450
4390
2310
5230
3450
4390
2310
5230

May

2430
4870
3670
5321
2430
4870
3670
4010
6842
4870
3670
4010
2430

7890

Jun

2520
5440
3980
4580
2520
5440
3980
4530
2520
5440
3980
4580
2520
5440

VBA Excel 2013/2016

Notice here that the numbers take on a different color based on their size. Your
case statement has given a different color to the numbers based on Case Is test

for less than a certain number.

45

VBA Excel 2013/2016

How to count

One of our issues for working with spreadsheets is to know how many rows or
columns we must work with. To find out you can use a simple counter.

Example: Bucket = Bucket + 1
Do
ActiveCell.Offset(1, 0).Range("Al1").Select
Bucket = Bucket + 1

Loop Until ActiveCell =

This is just one of many ways to count the rows with content.

For.. Next statement

The For Next loop uses a counter variable that increases or decreases in value
during each repetition or rotation of the loop.

Understanding the For...Next syntax:

Declare variable (counter) to hold number | Dim bucket as integer

Bucket =1
For counter = start to end For bucket=1to 4
Statement If Activecell > 5000 then
Next counter Activecell.font.bold = true

Activecell.offset(1, 0).Range(“A1”).Select
Next bucket

In the example on the right the For... Next loop will count to 4. There are three (3)
numbers in this structure; Bucket will keep track of loops are done, the one (1) in
the 1 to 4 is the starting point of the loops (the loop starts counting at 1), the four
(4) is the number of times the loop will be done and the ending point of the loops.

Another way to think of this is it will repeat the command lines 4 times (1 to 4).
Bucket is used here to match the starting number and keep track of each repeat
that the loop does. That is why we call it the counter, it retains the current number
the loop has done.

When the counter (Bucket) reaches the number to the right of “to” then the loop
will stop.

46

VBA Excel 2013/2016

(Dim is an abbreviation of dimension, a holdover from the old BASIC language.
It would make more sense to use the word Declare, but we are stuck with Dim.)
Declaring variables has two advantages. First, it helps catch spelling mistakes.
Suppose you use the variable bucket several times in a sub, but in one case you
misspell it as buckte. If you have already declared bucket in a Dim statement, VBA
will catch your spelling error, reasoning that buckte is not on the list of declared
variables.

The second reason for declaring variables is that you can then specify the types
of variables you have. Each type requires a certain amount of computer memory,
and each is handled in a certain way by VBA. It is much better for you, the
programmer, to tell VBA what types of variables you have than to let it try to
determine them from context. The variable types used most often are the following.

. String (for text like “Bob” or “The program ran without errors.”)

. Integer (for integer values in the range -32,768 to 32,767)

. Long (for really large integers beyond the Integer range)

. Boolean (for variables that can be True or False)

. Single (for numbers with decimals)

. Double (for numbers with decimals where you require more accuracy than
with Single)

. Currency (for monetary values)

. Variant (a catch-all, where you let VBA decide how to deal with the variable)

Symbols for Data Types

It is also possible to declare (some) data types by the symbols in Table 5.1. For
example, you could use Dim bucket@ or Dim bucket%, where the symbol follows
the variable name. This practice is essentially a holdover from older versions of the
BASIC language, and you might see it in legacy code. However,

| don’t recommend using this rather obscure shorthand way of declaring

variables. After all, would you remember them better?

Symbols for Data Types
Integer %

Long &

Single !

Double #

Currency @

String $

When you use the Dim statement in a procedure, you put the Dim statement at
the beginning of the procedure. Use a Dim statement to declare the object type of
a variable. In the above the word bucket is used as a variable. You can use any
word you like for the variable name.

A variable is the named storage location that can contain data that can be
modified during program execution. Each variable has a name that uniquely
identifies it within its scope. A data type can be specified or not.

47

VBA Excel 2013/2016

Variable names must begin with an alphabetic character, must be unique within
the same scope, can't be longer than 255 characters, and can't contain an
embedded period or type-declaration character.

If you don't specify a data type, the variable is a Variant by default.
Variable Naming Conventions

Programmers have surprisingly strong feelings about variable naming
conventions. The one thing they all agree on is that variable names should
indicate what the variables represent. So, it is much better to use a nhame such
as taxRate than to use a generic name like x. Your code becomes much
easier to read, both for others and for yourself, if you use descriptive names.

Beyond this basic suggestion, however, there are at least three naming
conventions used in the programming world, and each has its proponents. The
Pascal convention uses names like TaxRate, where the first letter in each
“‘word” in the name is upper case. The camel convention is similar, but it does
not capitalize the first word. Therefore, it would use the name taxRate. (The
term camel indicates that the hump is in the middle, just like a camel.) Finally,
the Hungarian convention, named after a Hungarian programmer, prefixes
variables with up to three characters to indicate their variables types. For
example, it might
use the name sngTaxRate to indicate that this variable is of type Single. Other
commonly used prefixes are int (for Integer), bln (for Boolean), str (for String),
and so on. The proponents of the Hungarian convention like it because it is
self-documenting. If you see the variable sngTaxRate in the middle of a
program, you immediately know that it is of type Single, without having to go
back to the Dim statement that declares the variable.

Which convention should you use? This seems to depend on which
convention is currently in style, and this changes over time. For a while, it
seemed that the Hungarian convention was the “in thing,” but it results in some
rather long and ugly variable names. At present, the camel convention
appears to be the most popular, so | have adopted it throughout this book.
But if you end up programming for your company, there will probably be a
corporate style that you will be required to follow.

Constants

The term variable means that it can change. Specifically, the variables
discussed earlier can change values as a program runs—and they often do.
There are times, however, when you want to define a constant that never
changes during the pro- gram. The reason is usually the following. Suppose
you have a parameter such as a tax rate that plays a role in your program. You
know that its value is 28% and that it will never change (at least, not within
your program). You could type the value 0.28 every place in your program where
you need to use the tax rate.

48

VBA Excel 2013/2016

However, suppose the tax rate changes to 29% next year. To use your old
program, you would need to search through all of the lines of code and change
0.28 to 0.29 whenever it appears. This is not only time-consuming, but it is
prone to errors. (Maybe one of the 0.28 values you find is not a tax rate but is
something else. You don’t want to change it!)

A better approach is to define a constant with a line such as the following.

Const taxRae = 0.28

This line is typically placed toward the beginning of your sub, right below the
variable declarations (the Dim statements). Then every place in your sub
where you need a tax rate, you type taxRate rather than 0.28. If the tax rate
does happen to change to 29% next year, all you have to change is the value
in the Const line.? Another advantage to using constants is that your
programs don’t have “magic numbers.” A magic number is a number found in
the body of a program that seems to appear out of nowhere. A person
reading your program probably has no idea what a number such as 0.28
represents (unless you explain it with a comment or two). In contrast, if the
person sees taxRate, there is no question

what it means. So, try your best to use constants and avoid magic numbers.3

Built-in Constants

There are many built-in constants that you will see in VBA. They are either
built into the VBA language, in which case they have the prefix vb, they are
built into the Excel library, in which case they have the prefix xl, or they are
built into the Microsoft Office library, in which case they have the prefix mso.

Actually, these constants all have integer values, and they are all members of
enumerations. A simple example illustrates the concept of an enumeration.
Consider the Color property of a Font object. It can be one of eight possible
integer values, and no one on earth would possibly memorize these eight
values. (They are not 1 through 8.) Instead, you remember them by their
constant names: vbBlack, vbBlue, vbCyan, vbGreen, vbMagenta, vbRed,
vbWhite, and vbYellow. Using these constants, you can change the color of a
font in a line such as:

Range(“A1”).Font.Color = vbBlue

Similarly, Excel has a number of enumerations. One that is useful when dealing
with ranges is the set of possible directions, corresponding to the four arrows
keys: xIDown, xIUp, xIToRight, and xIToLeft. Again, these constants are really
integer values that no one in the world remembers. You remember them instead
by their more suggestive names.

To view the many enumerations for VBA, Excel, and Office, open the Object
Browser, select the VBA, Excel, or Office library, and search the class list for items

49

VBA Excel 2013/2016

starting with Vb, XI, or Mso. Each of them is an enumeration that holds a number
of built-in constants. For example, the XIDirection enumeration holds the constants
xIDown, xIUp, xIToRight, and xIToLeft, and the VbMsgBoxStyle enumeration

holds all the constants that correspond to message box icons and buttons.

Object Variables

There is one other type of variable. This is an Object variable, which “points” to
an object. For example, suppose you have a Range object, specified by the range
name Scores on a worksheet named Data, that you intend to reference several
times in your program. To save yourself a lot of typing, you can Set a range
object variable named scoreRange to this range with the lines:

Dim scoreRange as Range
Set scoreRange = ActiveWorkbook.Worksheets(“Data”).Range(“Scores”)

From then on, you can simply refer to scoreRange. For example, you could
change its font size with the line:

scoreRange.Font.Size = 12

In the next few steps you will check a list of 25 numbers. There are 25 products
and no matter which spreadsheet you open with a product list, there is all ways 25
items. Because you know the total number ahead of time you want to create a For
Next loop to check your numbers.

1. Click on Sheet?2 tab and click E5 in the IfCase.xls workbook.
2. Press ALT + F11 to open the Visual Basic Editor.
3. At the bottom of Modulel type the following:

Sub CheckMyzS5S()

Dim numberl As Integer
nuberl = 1

For numberl = 1 To 25
If ActiveCell > 5000 Then ActiveCell.Font.Bold = True
AetiveCell. Offset (1, O0) .Range ("A1"™) .Select

Next numberl

End Sub

4. Click on Sheet2 tab and click E5 in the IfCase.xIsm workbook.
5. Run the CheckMy25 macro.

Notice you have a number of items Bold and the active cell ended on the blank
cell below the last column. Why because you told the macro to do the IF 25 times.

50

VBA Excel 2013/2016

Working with objects using a For .. Next statement

An Object in VBA is something you nhame, control, and manipulate in procedures.
In Excel an object can be; worksheet, selected range, or charts.

You can assign variables to refer to an object, it is easier to refer to the objects
themselves. The SET statement is used to assign a variable to an object. A
common obiject is the active cell or the activecell in a selected range.

Set Selectionl = ActiveCell
Here you are using "Selectionl" to be the name of the object.
With this you have given the active cell a name that you can use in your macro.

In the next few steps you will use the SET variable to loop through the For...Next
statement. Plus you will use an IF... Else... End If statement to make a decision
on Bold or Italic formatting based on the size of the number.

You will change your current CheckMy25 macro to check all the numbers in a
selected area; the range you have selected.

1. Change your CheckMySelection macro to look like this:

Jub CheckMySelection()

= <+

If'S._Et Aelectionl AetiveCell
. /
For Each Zelectionl In 3election

If Selectionl > 5000 Then

Gelectionl.Font.Bold = True ' YCII.II' |F With
Elze

delectionl.Font.Italic = True ELSE EddEd.
End If

Next 3Zelectionl "

End Zub

At the top you have SET your variable - then in the
FOR EACH - NEXT statement you have setup your
loop to step through the highlighted area.

51

VBA Excel 2013/2016

2. Select the range E5:E29 on Sheet2.
3. Run the macro CheckMySelection.

You could select the whole range of numbers and run the macro again and it
would do all the numbers.

How to select a range based on starting point

In Excel you can extend the highlight from the active cell to the last cell in the
range. In the next few steps you will type out the code that will do just that.

anchor_cell will be used to pickup the current cell address and hold it.
anchor_cell is a bucket to hold the cell address.

ActiveCell.End can be used to go in all four directions.
Example: xIDown, xIToLeft, xIToRight, xIUp

In your code you want it to go down and to the right to find the last cell in the
bottom row.

The last bit of your code is to select the complete range:

Range(anchor_cell, ActiveCell).Select
Think of it as: Range(“E5”, “G29”).Select

This last step takes the point of the anchor (the cell you first select) and the last
cell at the bottom right and extends the highlight from top left to the bottom right.

After you have created and used the code, in the next section you will copy this
macro over to the personal.xls file to use globally. This will be explained in the
next section.

1. Type the following in your IfCase.xIsm Modulel sheet below the other
macros.

Sub SelectWholeRange ()

Dim anchor cell As String

anchor cell = ActiwveCell.Address
AetiveCell.End(x1Down) W Select
AetiveCell .End (x1ToRight) . Select
Range (anchor cell, ActiveCell).3elect
End Sub

2. Select Sheet?2, click on cell C5.

52

VBA Excel 2013/2016

3. Run the macro SelectWholeRange.

53

VBA Excel 2013/2016

Your screen should look like this.

Apr ha Jun
Widget 201 2310 2430 2520
Widget 202 5230 4870 5440
VWidget 203 3450 3670 3980
VWidget 204 4390 5321 4580
Widget 205 2310 2430 2520
Widget 206 5230 4870 5440
VWidget 207 3450 3670 3980
Widget 208 4390 4010 4580
Widget 209 2310 6542 2520
Widget 210 5230 4870 5440
VWidget 211 3450 3670 3980
Wyidget 212 4390 4010 4580
Widget 213 2310 2430 2520
VWidget 214 5230 7890 5440
Widget 215 3450 3670 3980
VWidget 216 4390 5213 4580
Widget 217 2310 2430 2520
Widget 218 5230 4870 5440
Widget 219 3450 3670 3980
Widget 220 4390 4010 4580
Widget 221 2310 2430 2520
Widget 222 5230 4870 5440
Widget 223 3450 3670 3980
Widget 224 4390 4010 4580
Widget 225 5002 3872 4218

This can be a handy bit of code to use in other macros.

Now that you have two macros you can place one in another and have the two
macros work together.

How to add one macro in another's routine

In Excel you can use macros stored in you workbook to run from another macro.

Here you just add the name of the macro. In step 1 of the prior page you created a
macro to select a range of cells with data. Here you can see that we added the
name of the macro “CheckMySelection” to the next to the last line.

Sub SelectWholeRange ()

Dim anchor cell As 53tring

anchor cell = ActiveCell.Address
AetiveCell . .Endi(x1Down) . Select
AetiveCell .End(x1ToRight) . Select
Randge (anchor cell, ActiveCell).Select
CheckMySelection

End Sub

On page 40 you create the macro to check your selection of items and if greater
than 5000 make them bold if not make them italic.

This first part of the macro will highlight the range for you and the name you
added, CheckMySelection will mark them.

54

VBA Excel 2013/2016

Section 3 — Review

You must be able to answer the following questions on your own. As you
review the questions below, write in your answer below each one.

1. Can an IF statement be just one line?

2. Will a DO loop check before it runs or after it runs?

3. Why would you use a FOR — NEXT loop?

4. Why would you declare a variable at the beginning of your macro?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section
for additional information. Example: AutoSum, AutoFilter.

55

VBA Excel 2013/2016

SECTION 4 0 PERSONAL.XLSB

What will | learn in this section?
Personal.xlsb store for global use

Setup for Auto run

Final Exercise

56

Personal Workbook Macros

VBA Excel 2013/2016

There will be many of your macros that you would like to use over and over; no
matter what workbook you open. A macro of this type is a global macro and
should always be stored in the Personal.xls workbook.

This workbook is stored in the XLSTART s
Example: C:\Documents and Settings\{u
Data\Microsoft\Exce\XLSTART

ubfolder under your login.
serlogin\Application

on Data\Microsoft\Excel\XLSTART

Address :;) C:\Documents and Settingsibraswejl\Applicati
d_] My Document:
j My Computer
_2) Documents and Settings
1) o
() Microsoft
(2 Excel

l[_@_Desktop
<«
< OSDisk (C:)
I5) Application Data
) XLSTART

Othg

user name, your
windows login

How do | create a Personal.xl

sb file?

Click the drop down button for Store macro in: list and select Personal

1. In Excel, click the Record Macro button.
M 4k M t1 - Sheet2
Ready | 4 |
s
2. Type: test
3.
Macro Workbook.
Record Macro @
[ﬂacro name:]
|test \
Shortcut key: Store macro in: B
Ctrl+]‘_4‘ ‘ This Workbook r':;
Description: Personal Macra Workbook
o ————|New Workbook
Macro recorded 7/21 This Workbook k
]
[OK J [Cancel]

57

VBA Excel 2013/2016

4, Click the OK button to start the recording.
5. Press [ENTER] and click the Stop Recording macro button.

M4k M eetl
Ready | @ |

6. Press the ALT + F11 shortcut key to open the VBE.

Your screen should look like this.

% File Edit View Inset Format Debug Run Tools Add-Ins Window Help

ME-Jd 4« 28R 9 b u @ EEY - @ noco
Droject - VBAProject x| I(General)
E = Ca | -

E VBAProject (Book1) » Sub test ()
@ VBAProject (DMintegration_2010.xla
E@ VBAProject (IfCase.xism)

. B Microsoft Excel Objects

. EB) sheet1 (Sheet1)

) Sheet2 (Sheet2)

) Sheet3 (Sheet3) End Sub

----- @ ThisWorkbook

A e
test Macro

m

7. Click the Save button in the VBE to save your new PERSONAL.XLSB
workbook.

You can now delete the test macro and copy any macro that you have already
created to the personal.xlsb workbook to use globally.

In the future you can record your macro in the personal.xlsb when you would like
them to be global.

Auto Run Macro(s)

In Excel there is a way to make sure a macro is ran based on the event, that event
is the opening of an excel workbook.

You might like to have a macro run to check something in the spreadsheet before
the user starts working, or you might like to prompt the user to do or check
something before they start to work.

To have your macro run as soon as the workbook is open you just name the
macro Auto_Open. If you would like something to be done as the workbook is
closing, you name the macro Auto_Close. These two names are unique in

58

VBA Excel 2013/2016

Excel and Excel understands what it should do with the code placed in either
macro.

Auto_Open

Try the below example to see how the Auto_Open macro can work for you.

Open a new workbook.
Save the workbook as test.xIsm
Press ALT + F11 to open the VBE.

Add a module to the workbook.

M w0 bdpoE

(Hint: right click the Microsoft Excel Objects folder.)

- @ ¥BAProject (test.xls)
- &5

VBAProject Properties...

Insert bl -2 UserForm
Import File.., &Y Module

S | =)

5. Type the below macro.

[(General) lJ I auto_open

Sub auto_openi)

MsgBox "This is just a message!'"

End Sub

6. Save the workbook and then reopen.

Your screen should look like this.

Microsoft Excel @

This is just a message!

7. Click the OK button to close the message.

You can use the Auto_Open to do a number of things; pre-fill cells, formatting,
check for... anything you like.

59

VBA Excel 2013/2016

Auto_Close

You also use the Auto_Close, this can be a life saver for any workbook that you
need to check items before it closes. This macro will run every time you close, or
should | say try to close your workbook. If the items, you are check on are not
completed or left blank etc. you can have the file not close and prompt the user to
do something more to the spreadsheet.

Example of an Auto_Close macro:

I(General) _:_J |Auto_CIose

Sub Auto _Close()

Range ("41") .Select

If ActiveCell = "" Then
ActiveCell = Format (Date, "mmw/dd/yy"™)
AetiveCell = "=today() "™

AetiveCell . .Offset (1, 0) .Range ("Al1l™) .Select

ActivelWorkbook. Save
ThisWorkbook.Close

Else
End If

ThisWorkbook.Saved = True ' this will stop the prompt
ThisWorkbook.Close

End Sub

Final Exercise

You will open the file FinalExercise. Write a macro using a Do Loop to count how
many sales where made this day (using the Cost column) of your file. Click on cell
F5 and create a macro to 1) count the number of sales made for the day. (see
page 46)

2) have a message box appear giving the total number of sales for the day.
(see page 59) Remember to add an item on to the text of your message you need
to insert the & symbol.

3) After you have completed step 1 & 2, take the number and use it in a macro to
make all numbers $6,000 or over bold. (see page 50)

Now all three steps should run together.

60

VBA Excel 2013/2016

INDEX

Absolute or Relative....................... 20 Filter ... 7
AUto_CloSEevvviieieeieiieiee 55 If statement............coovvvviiiiiieneeeen, 32
AULO_OPEeN ... 54 MOAIfY ..o 28
Case statement.............cceeevevneeennn. 41 OPEN ..o 5
COde ..o 13 Record Macrocccevveeiiiiiiiieeeenns 8
(©70] (o] SF 42 Relative Referenceccccuvvvnnees 23
Customize the Ribbon 20 Stop Recordingeeeveeeennnnnnnns 10
Dim statement............ccccevvvvvevennnee. 44 Use Relative References................ 36
Do... Loop statement..................... 36 View MacCroSccoovveeeviveeiiiiiiieeeee, 6
DO...LOOP...iiieeeeeeeieeieee e, 33 Visual BasiCccooeeeeevvviiiiiiiieeeen, 25

61

